Foreword

How we move and live in cities has been undergoing a transformation owing, in large part, to technological developments in digital connectivity, vehicle automation and electrification, and the rise of new service delivery and business models centered on shared-use transportation. At TransLink, we refer to such new and emerging developments in transportation technology, business, and service models as “New Mobility.”

The pace and scale of changes afoot in the mobility ecosystem are such that TransLink cannot rely on business-as-usual approaches to doing things. As the regional transportation authority for the South Coast of British Columbia, we have a responsibility to help navigate our region towards a mobility future that benefits everyone. Where we harness the power of change and disruption in service of the public interest. We cannot do this alone – we need strong collaboration with our partners in government, industry and academia.

The New Mobility Lab, established in 2018, is TransLink’s effort to establish the necessary collaborations with the academic sector in order to help shape and support an active program of applied transportation research. These research findings will directly inform and shape transportation policy and programs in our region and help us more effectively navigate the coming transport revolutions.

In the first two years since its launch, the New Mobility Lab has supported nine (9) applied research projects from some of Canada’s leading transportation researchers. In the same time period, through the UBC Sustainability Scholars program, the New Mobility Lab has partnered with eleven (11) Masters students on a number of timely applied research initiatives.

TransLink values these academic partnerships for their unbiased and forward-thinking perspectives to push the envelope on what is being developed for a variety of transportation planning and policy initiatives.

Research projects have covered a wide range of themes, including: electrification of vehicle fleets and charging infrastructure strategies, Mobility as a Service (MaaS) trip planning and booking platforms, automated connected electric and shared (ACES) vehicles, dockless electric micromobility devices, artificial intelligence (AI) for big data, the future of curb management to accommodate a multitude of uses both physically and digitally, and many more.

TransLink recognizes the tremendous opportunities that academic-government partnerships present to help better understand some of our new challenges and opportunities, especially related to emerging transportation technologies and service models and help design solutions and responses that help to improve transportation choice, eliminate greenhouse gas emissions, improve safety, accessibility, affordability and equity for people and businesses across the region.

It is with pleasure that I present to you the first annual New Mobility Lab Research Compendium, intended as a reference to summarize the applied research that has been supported by the Lab to date and how the early results from these first research partnerships are already bearing fruit and helping us advance towards our regional and Enterprise goals.

—Geoff Cross, Vice President of Planning and Policy, TransLink
The New Mobility Lab

Rapid change is underway in the mobility ecosystem – in large part due to technological developments in digital connectivity, vehicle automation and electrification, and the rise of new service delivery and business models centered on shared-use transportation. At TransLink, we refer to such new and emerging developments in transportation technology, business, and service models as “New Mobility.”

WHAT IS THE NEW MOBILITY LAB?

The New Mobility Lab is TransLink’s primary platform for partnering with academic research institutions and researchers to advance our collective understanding and to help shape policy and solutions related to new transportation technologies, and business and service models. It was established to support and encourage transportation innovation in our region by providing stable, multi-year funding towards a coordinated program of applied transportation research of high interest and relevance to the Metro Vancouver region.

The funded research spans a range of disciplines, including, engineering, planning and policy, urban design, computer science, environmental and resource science, business, psychology, sociology, and economics. Each year the New Mobility Lab identifies several priority research topics of particular interest, but all topics related to new mobility with local or regional relevance are welcome.
About the New Mobility Lab

KEY PROGRAMS

The New Mobility Lab was established to engage academics on applied research that would help inform and shape the future of transportation in Metro Vancouver. The New Mobility Lab currently administers three main programs: The New Mobility Research Grant, the TransLink/UBC Sustainability Scholars Program and the New Mobility Research Dialogue.

1. The **New Mobility Research Grant** offers grant funding of up to $50,000 to well-defined projects undertaken by Canadian post-secondary researchers over two-year periods to support applied research in the areas of new and emerging transportation technology, service and business models and that helps to advance regional goals and priorities. Research can be in any discipline including consumer and market research; policy analysis; planning and design; modelling and visualization; and technology development, verification, demonstration, prototyping and testing. In 2018-2019, the Lab awarded a total of $450,000 over nine (9) different projects, for an average value of $50,000 per project.

2. The **TransLink/UBC Sustainability Scholars Program** connects UBC graduate students with applied research questions in the area of sustainability and new mobility that TransLink has identified as priorities. The Lab provides funding for 250 hours of work per scholar. In 2018-2019, the Lab provided a total of $75,900 to support eleven (11) different scholars in their applied research. Several of the scholars have gone on to be recruited into full-time positions at TransLink.

3. The research produced by both programs is featured at the annual **New Mobility Research Dialogue**. The Dialogue creates a space for academic researchers and public sector staff to discuss the latest research results and to collaborate in identifying new research needs within the region.

RESEARCH IN THE PUBLIC INTEREST

The aim of the Lab is to explore, test, and implement innovative ways to improve mobility in Metro Vancouver and further three key goals that TransLink has set out to specifically guide regional New Mobility efforts:

1. Enable seamless and efficient door-to-door mobility for people and goods;

2. Promote safe, healthy, clean, and compact communities;

3. Ensure affordable and equitable access for all.

Research supported by the New Mobility Lab should also help achieve the goals and targets set out in the **Regional Transportation Strategy (RTS)**. The current (2013) RTS envisions a region where we provide sustainable transportation choices; support a compact urban area; and foster a healthy environment, economy and communities.

It established two headline targets: that by the year 2045, half of all trips are made by walking, cycling, and transit; and the distances people drive have been reduced by one-third.
An update to the RTS (Transport 2050) is currently underway and expected to be completed by end of 2021. This update is contemplating the introduction of additional headline targets focused on: increasing equitable access to jobs and other opportunities; increasing the share of trips made without a personally-owned auto; reducing time spent stuck in congestion; ensuring that housing and transport costs remain affordable for households; eliminating transportation-related fatalities and serious injuries; increasing physical activity with a greater share of trips made by active modes; and eliminating GHG emissions from transport.

KNOWLEDGE TRANSLATION: RESEARCH INTO PRACTICE

Over the course of their work, researchers supported through the New Mobility Lab- have actively engaged with TransLink staff as well as staff from other municipal, regional and Provincial agencies, to ensure that their research programs and findings directly contribute to the advancement of the above regional goals and targets.

In 2018, the New Mobility Lab prioritized research that focused on:

• leveraging travel and travel-related data;
• understanding user behaviours where personalization and on-demand services are increasing user choice;
• accurately communicating and mapping the effects of incentives to help influence user mobility choice; and
• evaluating the effects of electrification on networks including transportation and smart grids.

In 2019, the New Mobility Lab prioritized research that focused on:

• big data in transportation and its potential for improving roadway and transit efficiency, safety, mode shift and seamless experience for travelers;
• ride-hailing research on governance and impact of various forms of regulation as well as the impact these services has on other modes of transportation and achieving regional goals;
• curb management and infrastructure for electric, automated, connected and shared modes of transportation to inform on policy measures to allocate, regulate and value curb space and design;
• Mobility as a Service (MaaS) related research to understand the potential for mode shift, pricing schemes, bundling mobility options and feedback and incentive mechanisms.

As part of the New Mobility Lab’s knowledge translation efforts, researchers have provided workshops, presentations and webinars to communicate their findings and recommendations and feed directly into local and regional policy and program development. For example:

• Phase 1 Open Data Architecture for the New Mobility Industry research by Dr. Hendrik Wolff included monthly meetings with the Strategic Planning and Policy department and a final presentation on ‘A Framework for Aggregators Apps: Revolutionizing the MaaS Industry in Greater Vancouver.’ This work has directly informed, and shaped TransLink policy development and investment decisions intended to enable a robust and effective Mobility-as-a-Service ecosystem.
• In February 2020, Dr. Sayed’s research culminated with new models for real-time safety evaluation of signalized intersections developed using data obtained from several intersections in British Columbia and Alberta with the potential for application to other jurisdictions via a proposed self-learning adaptive traffic signal control (ATSC) algorithm to optimize safety in real-time. This work has helped to inform and shape the policy and investment decisions of municipal road authorities and traffic safety professionals in Metro Vancouver.

• Meyboom’s research on ‘Transitioning into New Mobility: Designing the Digital Curbside’ engaged TransLink and municipal staff during a two-day workshop and webinar in July 2020 on ‘Future Curb Design and Management’. The results will be compiled to guide the development of recommendations for municipalities to update their curb management policies and coordinate pilot demonstration projects to test and evaluate concepts to better manage the various road users via physical design and/or digital applications.

• Dr. Martino Tran conducted a webinar in May 2020 for TransLink staff to present an analysis on ‘Artificial Intelligence for Inclusive Urban Mobility Systems’ to inform social media communication campaigns, public engagement efforts and data analysis for customer experience improvements. TransLink staff are now actively exploring these techniques to help leverage social media inputs to help rebuild transit ridership post-pandemic.

• The ‘Readiness for Shared Micromobility: Public Perceptions in Metro Vancouver’ research findings lead by Dr. Meghan Winters includes case studies and key informant interviews, focus groups and populations surveys. These were presented to members of TransLink and partners at the Regional Transportation Advisory Committee (RTAC) New Mobility Subcommittee (NMSC) in September 2020 to provide recommendations and support further coordination for the planning and implementation of shared micromobility across Metro Vancouver. Municipal and TransLink staff have been incorporating these recommendations into efforts to launch shared micromobility pilots.

• In October 2020, Dr. Jonn Axsen’s research team held a virtual ‘lunch and learn’ event to communicate the results of the surveys conducted as part of a ‘Consumer awareness and response to New Mobility innovations project, including shared, automated, and electric mobility.’ This research will inform municipal and regional efforts to both shape new mobility services in the public interest and to communicate effectively with the public about them.

This applied research has brought greater understanding on the needs and perceptions of the travelling public; the needs and space requirements of new vehicle technologies; how curb-sides, intersections, and public rights-of-way could be better managed; and how commercial transport providers and mobility data could be better regulated and managed.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>i</td>
</tr>
<tr>
<td>The New Mobility Lab</td>
<td>1</td>
</tr>
<tr>
<td>What Is The New Mobility Lab?</td>
<td>1</td>
</tr>
<tr>
<td>About The New Mobility Lab</td>
<td>2</td>
</tr>
<tr>
<td>Key Programs</td>
<td>2</td>
</tr>
<tr>
<td>Research In The Public Interest</td>
<td>2</td>
</tr>
<tr>
<td>Knowledge Translation: Research Into Practice</td>
<td>3</td>
</tr>
<tr>
<td>2018 Grant</td>
<td>6</td>
</tr>
<tr>
<td>Dr. Alexander Bigazzi</td>
<td>7</td>
</tr>
<tr>
<td>Human-Electric Hybrid Vehicles: Implications Of New Non-Auto Mobility Options For Street Design And Policy In The Vancouver Region (2018)</td>
<td>7</td>
</tr>
<tr>
<td>Tarek Sayed, Ph.d., P.eng., Fcae, Feic, Fcsce</td>
<td>10</td>
</tr>
<tr>
<td>Real-Time Safety And Mobility-Optimized Signalized Intersections</td>
<td>10</td>
</tr>
<tr>
<td>Dr. Martino Tran, Ph.d.</td>
<td>14</td>
</tr>
<tr>
<td>Artificial Intelligence For Inclusive Urban Mobility Systems</td>
<td>14</td>
</tr>
<tr>
<td>Hendrik Wolff, Ph.d.</td>
<td>18</td>
</tr>
<tr>
<td>An Open Data Architecture For The New Mobility Industry</td>
<td>18</td>
</tr>
<tr>
<td>Phase 2</td>
<td>18</td>
</tr>
<tr>
<td>2019 Grant</td>
<td>21</td>
</tr>
<tr>
<td>Dr. Jonn Axsen</td>
<td>22</td>
</tr>
<tr>
<td>Consumer Responses To New Mobility Innovations</td>
<td>22</td>
</tr>
<tr>
<td>Dr. Alexander Bigazzi</td>
<td>26</td>
</tr>
<tr>
<td>Perceived Comfort And Safety Of Road Users In Real-World Interactions With Autonomous Vehicles (2019)</td>
<td>26</td>
</tr>
<tr>
<td>AnnaLisa Meyboom</td>
<td>28</td>
</tr>
<tr>
<td>Transitioning Into New Mobility: Designing The Digital Curbside</td>
<td>28</td>
</tr>
<tr>
<td>Dr. Meghan Winters, Ph.d.</td>
<td>31</td>
</tr>
<tr>
<td>Readiness For Shared Micromobility: Public Perceptions In Metro Vancouver</td>
<td>31</td>
</tr>
<tr>
<td>Hendrik Wolff, Ph.d.</td>
<td>34</td>
</tr>
<tr>
<td>An Open Data Architecture For The New Mobility Industry</td>
<td>34</td>
</tr>
<tr>
<td>Phase 2</td>
<td>34</td>
</tr>
<tr>
<td>Additional Information</td>
<td>37</td>
</tr>
<tr>
<td>Eligibility Criteria</td>
<td>37</td>
</tr>
<tr>
<td>Evaluation Process</td>
<td>37</td>
</tr>
<tr>
<td>Translink-UBC Sustainability Scholars Program</td>
<td>38</td>
</tr>
<tr>
<td>Saki Aono</td>
<td>39</td>
</tr>
<tr>
<td>Veronica Ardila</td>
<td>39</td>
</tr>
<tr>
<td>Andrea Byfuglien</td>
<td>40</td>
</tr>
<tr>
<td>Shareen Chin</td>
<td>40</td>
</tr>
<tr>
<td>Citlali Cruz</td>
<td>41</td>
</tr>
<tr>
<td>Julia Higson</td>
<td>41</td>
</tr>
<tr>
<td>Shabnam Khalaj</td>
<td>41</td>
</tr>
<tr>
<td>Rainer Lempert</td>
<td>42</td>
</tr>
<tr>
<td>Neha Sharma</td>
<td>42</td>
</tr>
<tr>
<td>Remzi Xhemalce</td>
<td>43</td>
</tr>
<tr>
<td>Zak Zenasni</td>
<td>43</td>
</tr>
<tr>
<td>New Mobility Research Dialogue: 2019</td>
<td>44</td>
</tr>
</tbody>
</table>
2018 Grant

Project Descriptions & Researcher Backgrounds
HUMAN-ELECTRIC HYBRID VEHICLES: IMPLICATIONS OF NEW NON-AUTO MOBILITY OPTIONS FOR STREET DESIGN AND POLICY IN THE VANCOUVER REGION (2018)

Research assistant: Amir Hassanpour

Research Questions:

How will new non-auto mobility options (electric bicycles and other no-/low-power vehicles) impact speed dynamics on non-auto facilities and interactions among non-auto travellers? What transportation system policies, plans, and designs are needed to mitigate conflicts among non-auto modes?

GOALS & OUTCOMES

The goal of this research is to establish baseline data for non-auto vehicle usage around the region, from which projections and forecasts can be made.

The research will include recommendations of strategies regarding vehicle classification for regulatory purposes, and facility operating restrictions and design. Road user segmentations for infrastructure will similarly be suggested, with corresponding facility design vehicles, operating restrictions, and design features (cross-section widths, grades, and speed limits). Other strategies will also be explored based on the findings of the first part of the research, such as education or other “soft” measures such as Pedestrian Priority Zones that can mitigate conflicts.

Collect transportation planning and policy from municipalities, TransLink, Province and Transport Canada and examine the extent to which the plans and street design policies align with the developed recommendations or may need to be re-examined to accommodate the introduction of new non-auto mobility options in the region.
SUPPORTING REGIONAL GOALS

- The emergence of new micromobility options requires standardized classification for regulatory and planning purposes. The public sector can be benefited by this research in a number of ways such as facility planning, designing policies, piloting and coordinating new micromobility options in the region.

- The comprehension of different users and their interactions can leverage the benefits new technologies bring to our communities, such as improving access, health and safety in our communities, and increasing the adoption of sustainable transportation options and mitigating any potential risks innovating technologies can present.

Project Details

New mobility options create opportunities to address enduring challenges in the transport sector related to traffic congestion, air pollution, climate change, public health, energy consumption, and more. At the same time, they present new challenges to urban transport systems where there is already competition for space and access among road users, which can spill over into conflicts. How can we capture the potential benefits of more diverse travel options, while mitigating the risks of a wider variety of vehicles and services operating within constrained city street spaces? The objectives of this research are to address two broad questions: 1) How will new non-auto mobility options (electric bicycles and other no-/low-power vehicles) impact speed dynamics on non-auto facilities and interactions among non-auto travellers? and 2) Given these new non-auto mobility options, what transportation system policies, plans, and designs are needed to mitigate conflicts among non-auto modes? Is the Vancouver region ready to accommodate these new modes with existing infrastructure and policies? For example, do we need to re-think the operations and even terminology of “bike lanes”? To address these objectives, we will undertake substantial new field data collection work, including speed surveys, classification counts, and intercept surveys on non-auto facilities around the region.

REACT Lab Team

React is a group of researchers, inspired by the idea that truly sustainable transportation engineering and planning are possible, and that better information can lead to better decisions. Our focus is utilitarian bicycle and pedestrian travel analysis and modeling (speed and route choices, network design, energy expenditure, air pollution and health).
Researcher's Background

Dr. Alexander Bigazzi is an assistant professor at the University of British Columbia with a joint appointment in the Department of Civil Engineering and the School of Community and Regional Planning. He received his Ph.D. in Civil Engineering from Portland State University in 2014, investigating urban bicyclists' uptake of traffic-related air pollution. At UBC, he teaches classes and conducts research at the interface of transportation engineering and planning. His primary research areas include transportation emissions and air quality, active travel behaviour (walking and cycling), emerging human-electric hybrid vehicles (such as e-bikes), and sustainable traffic management and modeling. Dr. Bigazzi's research integrates technical and behavioural components of transportation systems for a comprehensive understanding of the complex pathways from policy, planning, design, and management decisions to operational, environmental, social, and health outcomes. Dr. Bigazzi heads a research lab at UBC (the REACT Lab, http://reactlab.civil.ubc.ca/) that is developing new understanding of how human energy expenditure influences travel behaviour, and what that means for new approaches to expanding access to and participation in active transportation. He is currently on the Transportation Research Board Standing Committee on Transportation and Air Quality. His research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Social Sciences and Humanities Research Council of Canada (SSHRC), Health Canada, TransLink, Cascadia Urban Analytics Cooperative, Canadian Foundation for Innovation, BC Knowledge Development Fund, City of Vancouver, City of Victoria, and the private sector (VeloMetro Mobility, ChipDrop, Pedego Bikes, Ohm Bicycles, and others).
Tarek Sayed, Ph.D., P.Eng., FCAE, FEIC, FCSCE

Professor, Faculty of Applied Science, Department of Civil Engineering
Tier 1 Canada Research Chair of Transportation Safety and Advanced Mobility
University of British Columbia, Canada

REAL-TIME SAFETY AND MOBILITY-OPTIMIZED SIGNALIZED INTERSECTIONS

Research assistant: Mohamed Essa

Research Question:

Can a transferable safety model for signalized intersections be developed to evaluate safety in real time? Can a novel self-learning adaptive traffic signal control algorithm be developed to optimize safety of signalized intersections in real time?

GOALS & OUTCOMES

The research’s goal is to develop safety models that can be used to evaluate the safety of signalized intersections in real time based on different traffic variables, such as traffic volume, queue length, shock waves, and platoon ratio.

These models will investigate the transferability of the developed real time safety models across different locations/jurisdictions and will be incorporated in adaptive signal control algorithms to optimize both safety and mobility in real time to minimize vehicle delays and safety by minimizing vehicle interactions.

The study will test and validate the developed multi-objective optimization procedure using calibrated traffic microsimulation models. The procedure should be applicable under different market penetration rates of CVs to cover the transition period before the full deployment of the CVs technology.
SUPPORTING REGIONAL GOALS

- TransLink’s efficiency and reliability of services can be improved by providing intersection management in real time through coordinated infrastructure monitoring.

- Connected vehicle technologies may provide big data on road usage that can help inform the management of mobility operations.

- Connected vehicle data analysis can help to optimize intersection efficiency, decrease congestion, improve travel times and decrease delays resulting in better service for our customers.

- Research and analysis in this area is ever more relevant as new and different service providers begin integrating vehicle communication technologies and the need for connected infrastructure increases.

Project Details

Prepared by Mohamed Essa, M.Sc., EIT., PhD Candidate & Research Assistant

Existing advanced traffic management and emerging connected vehicles (CVs) technology can generate considerable amount of data on vehicle positions and trajectories. This data can be used for real-time safety optimization of intersections. To achieve this, it is essential to first understand how changes in signal control affect safety in real-time and to develop safety models that can be used to evaluate the safety of signalized intersections in real time. Specifically, there is a need for models that can consider the effects of dynamic traffic parameters (e.g., traffic volume, shock waves, queue length, platoon ratio) on safety within short time periods (e.g., the signal cycle). These safety models could then be incorporated into an adaptive traffic signal control (ATSC) algorithm to optimize both traffic safety and traffic mobility using real-time CVs data.

This project has two main objectives toward optimizing the safety and mobility of signalized intersections in real time using CVs data. First, to develop, using real-world traffic data, safety models for signalized intersections at the signal cycle level that can be used to evaluate safety in real time based on various dynamic traffic parameters, such as traffic volume, queue length, shock waves, and platoon ratio and to check the models transferability to other jurisdictions. Second, to develop a novel self-learning adaptive traffic signal control (ATSC) algorithm to optimize the safety of signalized intersections in real time.
Real-time safety models for signalized intersections were successfully developed. Traffic video-data were recorded for six signalized intersections located in two cities in Canada. Traffic conflicts and various traffic variables at each signal cycle were extracted from the recorded videos. The traffic variables included: traffic volume, maximum queue length, shock wave characteristics (e.g. shock wave speed and shock wave area), and the platoon ratio. The results showed that all models have good fit and almost all the explanatory variables are statistically significant leading to better prediction of traffic conflict occurrence beyond what can be expected from the traffic volume only. The developed models can give insight about how changes in the signal cycle design affect the safety of signalized intersections. The transferability of the models to other jurisdictions was tested using video data for two corridors of signalized intersections in California and Atlanta. Overall, the results showed that the real-time safety models are transferable, which confirms the validity of using them for real-time safety evaluation of signalized intersections.

A novel self-learning adaptive traffic signal control (ATSC) algorithm was developed to optimize the safety of signalized intersections in real time. The algorithm was developed using the Reinforcement Learning (RL) approach and was trained using the simulation platform VISSIM. The trained algorithm was then validated using real-world traffic data obtained from two signalized intersections in the City of Surrey, British Columbia. Compared to the traditional actuated signal control system, the proposed algorithm reduces shock waves, traffic conflicts, and vehicle delays by approximately 71%, 31%, and 44%, respectively. To the best of the authors’ knowledge, this is the first self-learning ATSC algorithm that optimizes traffic safety in real time.

Researcher’s Background

Dr. Sayed is a Fellow of the Engineering Institute of Canada, the Canadian Academy of Engineering, and the Canadian Society for Civil Engineering and was the editor of the Canadian Journal of Civil Engineering for 8 years.

He has a distinguished research track record in transportation engineering and has received a high number of honors and awards. In 2004, UBC granted Dr. Sayed the title of Distinguished University Scholar, an honor held by a very small group of professors at UBC. Beyond several best paper awards, he also received the Sandford Fleming Award from the Canadian Society of Civil Engineering “for a member who has made particularly outstanding contributions to the development and practice of transportation engineering in Canada” (2009), and the Award of Academic Merit from the Transportation Association of Canada (2010) “in recognition of long-term contribution to the advancement of the academic field and the development of tomorrow’s transportation leaders.” In 2011, he received the Wilbur Smith Distinguished Transportation Educator Award for outstanding contributions to the field of transportation engineering from the Institute of Transportation Engineers (ITE). In 2014, he was awarded the Centennial Road Safety Award from the Transportation Association of Canada. This one-time award recognizes his outstanding transformational and long-term contributions to road safety over the past 100 years. And in 2015, Dr. Sayed received the Prince Michael International Road Safety Award for the most outstanding international road safety initiative.

During his research activities, he has addressed a wide spectrum of transportation system applications.
with a focus on traffic operation and safety, Intelligent Transportation Systems, and the application of information technologies. Over the past 16 years, he supervised to completion 85 Master and PhD students. He is the author or co-author of more than 350 journal and conference papers, including 220 published in the leading international journals. As well, he has completed numerous consulting projects in traffic operations and safety in North America and internationally, many of these relating directly to his research contributions and findings.
ARTIFICIAL INTELLIGENCE FOR INCLUSIVE URBAN MOBILITY SYSTEMS

Research assistant: Christina Draeger

Research Questions:

How inclusive is the Metro Vancouver transport system? What are the mobility needs of diverse and vulnerable citizens (elderly, youth, low income, etc.)?

GOALS & OUTCOMES

The overarching project goal is to analyze social inclusiveness in the Metro Vancouver transport system. This includes the analysis and prediction of the following indicators for the general population, with a focus on the mobility needs of vulnerable populations (elderly, young, disabled):

- Correlations between demographic, socio-economic and access to public transport
- Dependence of mode choice on trip purpose (e.g., job, education, public services, recreation)
- End-user experience (behaviour and sentiments)

Essential contributions of the project will be the definition of integrated data layers, models and metrics suitable for quantitative analysis of the indicators listed above. Key research questions include:

- What are the travel needs of the general population and vulnerable citizens?
- Where are their travel origins and destinations?
- What is their trip journey purpose (work, leisure, social, family, health care)?
- What is their travel experience, level of satisfaction?
SUPPORTING REGIONAL GOALS

• TransLink believes that providing quick, reliable and accessible service for all ages and abilities is essential to increase equity in Metro Vancouver.

• Research analyzing social inclusiveness and future travel behaviour in the regional transportation system allows TransLink to plan, provide options, focus investments and establish policies that support safety, inclusion and accessibility.

• This research project will provide insight to key elements used to improve mobility for various travel needs and purposes.

Project Details

A major global challenge is how to intelligently plan future transport systems that are sustainable and improve the well-being of citizens. However, we currently have poor understanding of the diverse behavior and movement of people in cities. As urban populations rapidly change and new disruptive transport services become available, predicting future demand for mobility is crucial for smart and inclusive transport planning and investment. An inclusive mobility system means providing opportunities for all individuals, especially the most disadvantaged to access services that enable full and healthy lives.

This research leverages new theory and techniques from artificial intelligence (AI) and urban analytics to improve predictions of travel behavior that account for the diverse mobility needs of vulnerable populations (seniors, youth, low-income). Geospatial algorithms will be developed to predict multimodal transport options that account for:

• Locations of vulnerable sub-populations from the larger population;

• Assessing travel accessibility to essential facilities and services (hospitals, schools, jobs)

• Predicting future travel behaviour patterns and level of transport access.

A Mobility Experience Dashboard will be developed to provide real time intelligence on public movement patterns, travel experience, and accessibility in different locations of the city throughout the day. This includes analysis and prediction of: Mode choice, trip journey purpose, and end-user experience with a focus on the mobility needs vulnerable populations (elderly, young, disabled) in Metro Vancouver. The mobility dashboard will address the following questions:
Demographic analysis

• Where are people going?
• Where are they coming from?
• What is their trip journey purpose (work, leisure,
 social, family, health care)?
• What is their travel experience, level of satisfaction?

Schedule optimization

• Optimize over population segment, trip journey
 purpose, time, distance and cost.
• Improve transit scheduling, routing, operations
 and maintenance.
• Improve end-user experience.
• Cost-benefit analysis of transit vs. other modes
 (personal car, ridesharing, on-demand).

Urban Predictive Analytics

Lab RESEARCH TEAM

The Urban Predictive Analytics Lab at the University of
British Columbia, combines computational methods,
data analytics and systems-theoretic approaches to
model, analyze and simulate interdependency between
infrastructure, technology, people and the environment
in urban settings. We are particularly interested in
understanding how these factors will play out in the
emerging smart cities movement. We are driven by the
following research challenges and questions:

• Who will benefit from new technology and data to
 ensure inclusiveness, equity and quality of life?
• To what extent can we predict future impacts,
 manage risk, and transition to sustainable cities?
• How can we inform decision-making, policy and
 investment strategies in the face of complexity
 and uncertainty?

To address these challenges our core areas of
competence include:

Data-Driven Scenario Planning – we develop data
intensive scenarios to understand the current
conditions and possible future trajectories of urban
populations, technology and infrastructure.

Predictive Modelling and Simulation – we build
advanced management systems to collect, curate
and process massive data sets, and apply high
performance computing to predict the consequences
of future urban trajectories and scenarios.

Evidence-Based Policy Analysis – we use our results
to educate technical leaders, engage industry and
community stakeholders, and inform infrastructure
and technology investment decisions to achieve
positive societal and environmental outcomes.

Researcher’s Background

Dr. Martino Tran’s research focuses on understanding
the environmental and societal impacts of
infrastructure and technology in cities. He applies
complexity sciences and computational methods to
measure, characterize and model interdependencies
between human behaviour and technology use in the
built environment. Overarching research questions
include: Who benefits from new technology and what
are the equity implications? What are the limitations
and opportunities for technology to improve human
well-being and mitigate climate change? How can
scientific research inform policy and decision-making
to achieve sustainability outcomes?
Martino completed his PhD in Environmental Science specializing in Computational Modelling at the University of Oxford, where he developed algorithmic behavioural models of social network influence to understand and predict early adoption of electric vehicles for climate change mitigation.
AN OPEN DATA ARCHITECTURE FOR THE NEW MOBILITY INDUSTRY – PHASE 1

Research Questions:

How should data ownership be defined and what are the concerns of privacy and security issues for the various stakeholders? What are potential effects of data sharing on business models (e.g. compliance costs)? What are the best ways to design potential data mid-layer infrastructures? What are the advantages and disadvantages of implementing MaaS policies at different levels of government (federal, provincial, local)?

GOALS & OUTCOMES

The research study explicitly calculates the welfare gains to the Lower Mainland from different app-regulation options and show how to overcome problems such as the absence of an integrated platform for mobility, monopolization, and coordination and regulation.

Phase 1 developed a basic model of the MaaS industry and defined a role for aggregators in the New Mobility Services industry. The research shows how a mandatory open data policy could promote competitiveness in the New Mobility Service industry and how a mid-layer or Computer Reservation System (CRS) operated as a public utility could boost efficiency and give access to valuable mobility data.
SUPPORTING REGIONAL GOALS

- TransLink, as the transportation authority in Metro Vancouver and a service provider, may benefit from this research related to the coordination, governance, privacy and data management of Mobility as a Service (MaaS).

- The integration of public and private transportation services on a single digital platform has the potential to encourage mode share shift towards more sustainable modes of travel and enable a seamless experience for customers.

- The proper management of these platforms may help facilitate reliable and convenient transportation options for customers while ensuring our transportation system achieves goals related to sustainability, efficiency, and affordability.

Project Details

The New Mobility Services (NMS) industry is growing rapidly throughout the world, providing enormous opportunities to companies and individuals. At the same time NMS poses new challenges to cities, such as how to structure the industry.

The NMS industry is likely to become a winner-take-all market because it features strong network effects. Stated simply, when an operator becomes more appealing to users as its userbase increases, this is a network effect. In ride-hailing platforms, the more drivers there are the easier it is to get a ride, and the more potential riders there are the easier it is for drivers to make money. Data is an additional factor: With more users, more data can be collected, leading to an improved service, which in turn leads to more users, and so on. These network effects also create a large barrier to entry for new firms to start an innovative service from scratch: one needs a large user base to attract more users. For a new firm entering the NMS market a lot of advertising effort is necessary to overcome the hurdle of starting with zero users. Similarly, new entrants will lack the data necessary to provide the same quality of service as established firms, even if they have new ideas that would thrive with a large enough user base.

The structure of the NMS industry will tend towards having very few firms dominate the industry. It leads to the creation of walled gardens, where one single platform is able to lock customers into a proprietary environment. Walled gardens are problematic for a city as its residents will depend on one service provider for all transportation needs. This would
make residents vulnerable to one corporation’s pricing, data regulation, and investment strategies. The company that controls the dominant platform can decide which services will be discontinued and which users to accept, leaving users without an outside option if the monopolist fails to serve their needs.

We develop four policy options, considering each policy's effects on individuals, public transport, the taxi industry, businesses, and the NMS industry itself: (1) Unregulated market, (2) Mandatory Open Data, (3) Mid-Layer as Public Utility, and (4) Exclusive Contract with an Aggregator.

Option 1, the unregulated market, is undesirable for the reasons discussed above. Options 2-4 introduce the role of aggregators, and the role of data regulation. An aggregator is a technology that aggregates multiple mobility services in a single, digital platform. They can combine multiple modes of transportation supplied by different operators, intercomparing thousands of potential routes in a fraction of a second and offering up the fastest, cheapest, or otherwise best options.

Option 2 uses mandatory open data to promote aggregators that are neutral and effective, as they can offer options from all NMS without having to enter into expensive bilateral contracts. Option 3 combines mandatory open data with a data mid-layer, an intermediary between operators and aggregators that further facilitates the functionality of aggregators while reducing anti-competitive network effects. Option 4 is the aggregator itself offered as a public service.

Researcher’s Background

Dr. Wolff has emerged as an expert in transportation, energy and environmental economics. He has successfully developed and applied new econometric techniques to study various transportation and energy policies and his research is internationally recognized as novel and impactful on policy. With co-author Ryan Kellogg, Wolff won the award for most outstanding publication in environmental and resource economics in 2009. His research has led to important policy changes at the World Bank and United Nations, and he has been invited to consult for the U.S. Department of Energy, the President of the World Bank, and the Minister of the Environment of China. His work has been discussed on US national television (i.e., ABC News) and international media (i.e., Wall Street Journal). In his free time, Hendrik enjoys the magnificent nature in British Columbia with the many opportunities for trail running in the North shore, downhill skiing in Whistler, snowshoeing or hiking on top of mountain peaks and in the evenings attending a Yoga class.
2019 Grant

Project Descriptions & Researcher Backgrounds
CONSUMER RESPONSES TO NEW MOBILITY INNOVATIONS

Research assistant: Zoe Long

Research Question:

What is the consumer awareness, perception and response of a variety of New Mobility options (including ride-hailing, car-sharing, MaaS, AVs and EVs)?

GOALS & OUTCOMES

The research will produce a publicly available report of all findings and analyses conducted on the Metro Vancouver sample, which will be submitted to TransLink and disseminated to key stakeholders. Dr. Axsen will work with TransLink and a communications firm to widely distribute and gain media coverage for this report.

The data obtained will be analyzed using descriptive statistics and possibly regression analyses to understand variables that help to explain willingness-to-use the innovations. The final report to TransLink will include analyses on the Metro Vancouver subsample to generate regionally specific insights.
SUPPORTING REGIONAL GOALS

- The Canadian consumer’s awareness and perception of New Mobility travel modes help TransLink ideate future piloting opportunities and guide partnerships.

- Shared, electric and autonomous technologies have the potential to improve access, reduce congestion, decrease greenhouse gases and create healthier and safer communities if implemented with a focus on the public’s needs.

- Metro Vancouver's customer perspective can provide TransLink an insight on policies and actions that encourage mode shift as well as road pricing schemes and future infrastructure investment.

Project Details

The Sustainable Transportation Action Research Team (START) is planning a three-stage project evaluating consumers' responses to three New Mobility innovations, including shared, automated, and electric mobility. This multi-stage project involves a mixed-method approach, drawing on quantitative (large-sample surveys) and qualitative approaches (in-depth, semi-structured interviews):

- Stage 1 is a quantitative survey to assess consumer awareness and response to a broad range New Mobility innovations (ride-hailing, car-sharing, automated vehicles, and electric vehicles)

- Stage 2 involves in-depth, qualitative interviews with consumers regarding their potential use of these new innovations, focusing more on automated and shared vehicles

- Stage 3 is another quantitative survey focusing on careful elicitation of consumers response to vehicle automation technology, and its interactions with shared and electric mobility

The broad objective of Stage 1 is to describe consumer awareness, perceptions and preferences regarding New Mobility travel modes including shared, automated, and electric mobility. Examples of these innovations include ride-hailing, car-sharing, bike-sharing, electric mobility, and automated vehicles (for private vehicles, shared vehicles and fleets). Data will be collected using a representative sample of Canadian households. This research seeks to understand what consumers, want, why, and how that might change over time – which in our view has received little attention thus far.
The specific objectives of Stage 1 are to:

1. Describe consumer awareness and perceptions of a variety of New Mobility options, including ride-hailing, car-sharing, automated vehicles, and electric mobility – individually and in combination.

2. Assess consumer response to (or willingness-to-use) these innovations.

3. Identify the characteristics of consumers that are more likely to adopt each innovation (e.g., demographic details, values, and lifestyle).

4. Describe consumer support (or opposition) to policies that may guide the deployment of New Mobility options, including road pricing schemes and infrastructure investment.

Building on experience from previous in-depth survey projects, the research team will design a survey instrument, which will be implemented to a large, representative sample of Canadian consumers (n = 3,600 including English and French versions), as well as to a large oversample of residents in Metro Vancouver, Greater Toronto Area, and Montreal Metropolitan Area households to allow for regional analyses. The survey will include sections to collect details for each respondent’s household, including vehicle ownership, travel patterns, familiarity with and perceptions regarding New Mobility innovations, willingness to use New Mobility options, and support for New Mobility related policies.

Sustainable Transportation Action Research Team (START)

The SFU Sustainable Transportation Research Team (SFU-START) is a research collaborative within the Faculty of Environment at Simon Fraser University that focuses on the transition to lower impact transportation systems. SFU-START takes a unique interdisciplinary approach to its research, combining elements of economics, engineering, marketing, policy and psychology into the analysis of sustainable transportation solutions. SFU-START conducts research and engages governments, industry and communities to actively transition the transportation sector towards a “sustainable system” that effectively:

- limits emissions and waste to be within the planet’s ability to absorb them (e.g. deep cuts to greenhouse gas emissions);
- uses renewable resources efficiently (e.g. wind, solar, biofuels), while minimizing consumption of non-renewable resources (e.g. fossil fuels);
- is economically efficient in transition and in operation, affordable to individuals and communities, and supportive of a vibrant economy; and
- allows the basic access needs of individuals and societies to be met safely and in a manner consistent with human and ecosystem health.

START produces policy- and industry-relevant sustainable transportation research in three key aspects of transportation: vehicles and drivetrains, fuels and infrastructure, and mobility and travel demand. For each aspect, we aim to produce comprehensive research to assess different transportation technologies, practices and solutions according to technological, feasibility, consumer and citizen acceptance, business and innovation strategy, and public policy.
Researcher’s Background

Dr. Jonn Axsen explores transitions to sustainable energy systems. He draws from disciplines of economics, psychology, sociology and engineering to investigate the nexus of technology, environmental policy, and consumer behaviour. Jonn’s study of consumers’ social valuation of plug-in electric vehicles has earned him recognition as “Young Researcher of the Year” at the OECD’s 2011 International Transportation Forum. His specific research interests include:

- Adoption of pro-environmental technology
- Electric mobility and alternative fuel vehicles
- Consumer attitudes, values, lifestyle and social influence
- Citizen acceptance of energy and policy
- Energy system simulation modeling
- Climate policy design and impacts

Jonn strives to bring attention to the importance of “human” aspects of sustainable systems—understanding the attitudes, values and lifestyles of individual consumers, and how these can change. His research methods include large-scale consumer surveys, in-depth interviews and focus groups, energy-economy modeling, social network observation and analysis, discrete choice modeling, statistical analysis, factor and cluster analysis, technology assessment, and life-cycle impact analysis. His research has been funded by public and private organizations such as the California Air Resources Board, the California Energy Commission, Natural Resources Canada, and BMW.

Specific examples of projects include:

- **The Canadian Plug-In Electric Vehicle Study (2013-16),** which included a Canada-wide survey of new vehicle buyers (n = 1,754), as well as household interviews and behavioural-realistic modeling. This project produced novel insights into consumer awareness, perceptions, and preferences regarding plug-in electric vehicles, and modelled the effects of electric vehicle policy on market share. The findings are summarized in a publicly available report (http://remmain.rem.sfu.ca/papers/jaxsen/Electrifying_Vehicles_(FINAL)_V2.8_(July10).pdf). Clean Energy Canada called this study “the most authoritative Canadian electric vehicle market study ever.”

- **More recently,** Dr. Axsen served as a Guest Editor for the leading academic journal in his field, Transportation Research Part D: Transport & Environment, titled “The roles of users in low-carbon transport innovations: Electrified, automated and shared mobility”, the special issue includes 20 peer-reviewed articles on consumer aspects of New Mobility, and was published in Summer 2019.
PERCEIVED COMFORT AND SAFETY OF ROAD USERS IN REAL-WORLD INTERACTIONS WITH AUTONOMOUS VEHICLES (2019)

Research collaborator: Dr. Jordi Honey-Roses
Research assistant: Gurdiljot Gill

Research Question:
Do other road users operate differently when interacting with AVs, and are those interactions perceived as comfortable and safe?

GOALS & OUTCOMES

This research will investigate how vehicle autonomy affects the travel experience of other road users, both combined with and independent of the distinct operational features of Autonomous Vehicles (AV) interactions and mediated by traveler characteristics.

The goal is to explore the impact AV technology has on the travel experience of other road users (e.g., delays) and whether these interactions are perceived as more or less comfortable and safe compared to other vehicles. The research will explore if those differences in perception vary among certain segments of the population disproportionately along with operational characteristics of the roadway.
SUPPORTING REGIONAL GOALS

• The impact of new technologies, such as Autonomous Vehicles, on road users is essential to understand for TransLink and the public sector to form frameworks, strategies and future policies.

• It is essential for TransLink to research and pilot Autonomous Vehicles to understand the potential this technology can provide to improve mobility in the region and reduce operating costs.

• Research in this area can set the foundation to ideate pilots, plan future street infrastructure and design and improve customer-oriented service.

Project Details

with Dr. Jodi Honey-Rosés of the UBC School of Community and Regional Planning

Autonomous vehicle (AV) technology is advancing rapidly, but important questions remain about how non-automated road users (pedestrians, cyclists, drivers) will interact with AV in real-world settings. This research addresses the question: Do other road users operate differently when interacting with AV, and are those interactions perceived as comfortable and safe? To address this question, we will use an autonomous shuttle pilot project being undertaken at the University of British Columbia. We will collect and analyse video data of road user interactions with the AV and collect data on perceptions of comfort and safety using intercept and web surveys. Analysis of these data will reveal how vehicle autonomy affects the travel experience of other road users, both combined with and independent of the distinct operational features of AV interactions, and mediated by traveler characteristics. The UBC pilot project provides a unique opportunity to inform strategies for the responsible introduction of AV in Metro Vancouver and beyond.
TRANSITIONING INTO NEW MOBILITY: DESIGNING THE DIGITAL CURBSIDE

Principle Investigator: AnnaLisa Meyboom
Lead Researcher: Yuval Fogelson
Undergraduate research assistants: Zhenyi Zhou, Kertyy Guo, Lukas Ewing and Yiguan Liu

Research Questions:

What are the current and future disputes over the curbspace? What design strategies can adapt to constant changing demands of new mobility while guaranteeing a people-centric, transit-oriented, holistic design?

GOALS & OUTCOMES

The research will test new configurations and solutions for different urban conditions and typologies and propose design reconfiguration of spaces in seven different locations and municipalities in the Metro Vancouver area served by TransLink.

The research will highlight future curbspace allocation design strategies and guidelines based on research and design proposals. The research will propose implementation methodologies and highlight needed policy change to achieve new configurations.
SUPPORTING REGIONAL GOALS

- The research focuses on seven different locations and municipalities in Metro Vancouver area served by TransLink.

- TransLink can improve bus reliability and increase ridership through management and design of the curb at high-demand locations such as transit centres and high-volume transit corridors.

- New and shared modes of transportation are shifting curb use and demand.

- Curbside management strategies can be effective in discouraging single-occupancy vehicles, encouraging sustainable modes of transportation and improving safety related to curbside activities.

- Safe, active, accessible and equitable access to everyone can be leveraged by exploring different curb designs and modal prioritization.

Project Details

As we transition into new mobility, the use and design of the public realm will need to adjust in response to anticipating disruptive changes associated with new mobility operators and service providers, as well as new curbside management and enforcement technologies. Cities are already experiencing a spatial dispute over the curb space, caused by the plentitude of its uses and users, often with conflicting needs and benefits. The proposed research sets to first map out this dispute by analyzing the existing and anticipated future curbspace uses and users, as well as their interconnected relationships. Design solutions will be tested in seven different locations in municipalities across the Metro Vancouver area, served by TransLink. These studies will serve as a base for urban design and implementation strategies and tactics for new mobility, which will be assessed by their adaptability to rapid and unpredictable transformation of cities and development in technologies.

Ideally, transitional design solutions for future curbspace allocation and use, should correspond to anticipated changing needs generated by the disruption associated with new mobility, which is set to further impact the existing spatial dispute over the curbspace.

In the absence of a holistic approach for the allocation of space between the different parties disputing the public realm, different new mobility
operators and new entrants may push their own agenda. Additionally, on-ground design solutions and enforcement require clear policies regarding management and monetisation of the curbspace use in the context of a Mobility-as-a-Service related platform. While there is some discussion around autonomous urbanism, there is less focus on design solutions for the transition period prior to automation, responding to the highly dynamic new mobility landscape. As new mobility diffuses into the city space, inadequate permanent designs may be costly to reconfigure and may impair the sustainability objectives of cities.

The research seeks to better understand the current and future dispute over the curbspace through mapping the different disputing uses, users and their spatial and organizational needs.

The proposal will imagine design strategies allowing adaption to constantly changing demands of new mobility, while guaranteeing a people-centric, transit-oriented, holistic design.

Redesign proposals will be presented for seven locations throughout the Metro Vancouver area, served by TransLink. These can serve the respective municipalities for policy adaptation, as well as the implementation of demonstration and pilot projects.

Transportation Infrastructure and Public Space Lab (TIPSlab)

The Transportation Infrastructure and Public Space (TIPSlab) is an interdisciplinary research group which examines the potential and implications of future transportation infrastructure. TIPSlab aims to integrate social and ecological concerns into emerging design methodologies.

As collaborative team engaged with current design theories in architecture, landscape architecture, planning and engineering, the lab speculates on future opportunities for infrastructure design and provides grounded scenarios for pulling the future closer.

The lab is based in the School of Architecture and Landscape Architecture and has worked in collaboration with the Sauder School of Business, School of Community and Regional Planning as well as the varied engineering departments at UBC.

Researcher’s Background

AnnaLisa Meyboom is an Associate Professor in the School of Architecture & Landscape Architecture and the Director of the Transportation Infrastructure and Public Space Lab (TIPSlab) at the University of British Columbia. In her earlier years she was a bridge engineer, after which she completed her Master of Architecture and has practiced in both fields since. Her area of research expertise is the design of future transportation infrastructure and its critical and catalytic relationship to public space. She has designed electric vehicle infrastructure networks and examined the future impact of autonomous vehicles on urban form. She promotes the inclusion of social, cultural and economic aspects in the design of infrastructure and has developed processes and mechanisms by which to do this.

AnnaLisa Meyboom is an Associate Professor in the School of Architecture & Landscape Architecture and the Director of the Transportation Infrastructure and Public Space Lab (TIPSlab) at the University of British Columbia. Her area of research expertise is the design of future transportation infrastructure and its critical and catalytic relationship to public space.
Dr. Meghan Winters, Ph.D.

Associate Professor, Faculty of Health Sciences
Michael Smith Foundation for Health Research Scholar
Lead, Cities, Health, and Active Transportation Research (CHATR) Lab
Simon Fraser University, Canada

READINESS FOR SHARED MICROMOBILITY: PUBLIC PERCEPTIONS IN METRO VANCOUVER

Research Questions:

Who are the potential users of shared micromobility, and how are they distributed regionally? What are the barriers and facilitators for use of micromobility? What is the potential for integration with transit services, in terms of first and last mile?

GOALS & OUTCOMES

The research will produce locally relevant data which can help to inform a coordinated, context-aware approach toward policy that supports a smoother transition toward shared micromobility services in Metro Vancouver.

The research produced three documents including a Case Studies report, a Focus Group Surveys Results and Policy Recommendations. The Case studies report offers insights and key informant interviews on the implementation and usage patterns of shared micromobility. The Focus Group Survey’s Results compiles the information the surveys and aims to scope the understanding and awareness of shared micromobility across different groups in the region, including motivators and barriers to their use. The Policy Recommendations report is a collaboration with HUB Cycling and includes their perspectives on recommendations for the implementation of Shared Micromobility in the region and the responsible organizations.
SUPPORTING REGIONAL GOALS

- TransLink is interested in exploring future integration of micromobility with transit services to improve sustainable transportation in the region.
- Shared micromobility services can provide convenient and reliable transportation options, as well as first and last mile connections to transit hubs throughout Metro Vancouver.
- The widespread adoption and implementation of micromobility services may be best achieved by understanding current public perceptions and decreasing barriers for usage in order to ensure healthy, safe and equitable access when these shared modes become available in our region.

Project Details

Shared micromobility is a catch-all phrase that is used to describe a variety of shared, publicly available, human and electric powered vehicles including bike share (docked and station-based), electric bicycles and electric scooters. As shared micromobility services expand, Metro Vancouver is challenged to establish policy, infrastructure, and regulatory frameworks which will integrate shared micromobility with existing transportation services.

This project, led by the Cities, Health, and Active Transportation Research (CHATR) Lab in partnership with HUB Cycling, aims to examine public perceptions of micromobility in Metro Vancouver to understand the potential for adoption and use of shared micromobility in the region. Using learnings from parallel case studies and key informant interviews, the research will use focus groups and a population survey to answer the following research questions:

1. Who are the potential users of shared micromobility, and how is this distributed regionally?
2. What are the barriers and facilitators for use of micromobility?
3. What is the potential for integration with transit services, in terms of first and last mile?

Cities, Health, and Active Transportation Research (CHATR) Lab

We work together with communities to understand the intersection of population health, urban environments, transportation and safety, producing evidence to support practice, policy, and programs.

We envision a future where all Canadians have access to environments that are safe, enjoyable, and
inclusive — where getting around contributes to active lifestyles, vibrant city culture, sustainable natural spaces, health and well-being for all.

Focus Areas

- Active transportation
- Urban form and healthy built environments
- Road safety for cyclists and pedestrians
- Physical activity and mobility
- Social connections and well-being
- Equity
- Public policy
- Crowd-sourced data and citizen science

Methodology

- Administrative data
- Population-based surveys
- Natural experiments: “how much benefit” and “for whom”
- Focused primary data collection (intercept surveys, personal-activity sensors)
- Qualitative data collection (focus groups, interviews)
- Observational research
- Spatial analysis and GIScience

Researcher’s Background

Dr. Meghan Winters is an epidemiologist interested in the link between health, transportation, and city design. She conducts research and knowledge exchange activities in close collaboration with local governments, health authorities, and non-governmental organizations. She leads the Cities, Health, and Transportation Research (CHATR) Lab (www.chatrlab.ca), with a program of research that focuses on ways that cities can play a role in promoting mobility, health, social connections, and resiliency amongst people of all ages and abilities.

Meghan received her Ph.D. in 2011 from the School of Population and Public Health at the University of British Columbia. She completed a post-doctoral fellowship at the Centre for Hip Health and Mobility, studying older adults’ mobility and the built environment. Dr. Winters joined the Faculty of Health Sciences at Simon Fraser University as an Assistant Professor in July 2011.

Out of the office, Meghan aims to spend the maximum time outside, biking, camping, picnicking and exploring with her family in tow.
Hendrik Wolff, Ph.D.
Associate Professor, Faculty of Economics
Co-editor of the Journal of Environmental Economics and Management, the leading journal publication on environmental economics
Member of the editorial council of Journal of the Association of Environmental and Resource Economists (JAERE)
Simon Fraser University, Canada

AN OPEN DATA ARCHITECTURE FOR THE NEW MOBILITY INDUSTRY – PHASE 2

Research Questions:
How should data ownership be defined and what are the concerns of privacy and security issues for the various stakeholders? What are potential effects of data sharing on business models (e.g. compliance costs)? What are the best ways to design potential data mid-layer infrastructures? What are the advantages and disadvantages of implementing MaaS policies at different levels of government (federal, provincial, local)?

GOALS & OUTCOMES
The research study explicitly calculates the welfare gains to the Lower Mainland from different app-regulation options and show how to overcome problems such as the absence of an integrated platform for mobility, monopolization, and coordination and regulation.
Phase 2 research includes close collaboration with TransLink staff to focus on developing the details of an implementation strategy for the various policy elements for the introduction of MaaS in Greater Vancouver. Phase 2 elaborates on specifics such as data ownership, user privacy and data security for various stakeholders in this public private engagement; the potential effects of data sharing on business models and best practices for the establishment of data mid-layer infrastructure; MaaS policies at various levels of government as well as pricing and regulation schemes.
SUPPORTING REGIONAL GOALS

- TransLink, as the transportation authority in Metro Vancouver and a service provider, may benefit from this research related to the coordination, governance, privacy and data management of Mobility as a Service (MaaS).

- The integration of public and private transportation services on a single digital platform has the potential to encourage mode share shift towards more sustainable modes of travel and enable a seamless experience for customers.

- The proper management of these platforms may help facilitate reliable and convenient transportation options for customers while ensuring our transportation system achieves goals related to sustainability, efficiency, and affordability.

Project Details

In the second phase of our project, we closely evaluated four anti-trust policy options for jurisdictions to regulate the New Mobility Services (NMS) industry, considering each policy’s effects on individuals, public transport, the taxi industry, businesses, and the NMS industry itself: (1) Unregulated market, (2) Mandatory Open Data, (3) Mid-Layer as Public Utility, and (4) Exclusive Contract with an Aggregator.

Option 1, an unregulated market, is undesirable because strong network effects will lead to walled gardens. Services are able to use the data generated from users to create better services, leading to a higher number of users, leading to more data, and so on. The first services to enter a market (e.g. Uber and Lyft entering the ride-hailing industry) have an advantage. Additionally, in an unregulated market, aggregators depend on bi-lateral contracts with each operator in order to access the operator’s data. Some aggregator apps are backed by large car makers, for example Moovel (funded by BMW and Daimler) or Transit (funded by Renault Nissan Mitsubishi Alliance). The companies standing behind such aggregators have interest in their product being displayed favourably on the app. This hampers the pro-competitive effects of such aggregators and makes it harder for aggregators to sign contracts with more operators.

With option 2, mandatory open data, we arrive at a simple yet powerful change to regulation: no real-time data-sharing means no business license granted to the operator. Aggregator apps, drawing on data...
made available by operators, can make the NMS market more competitive, inhibiting the formation of a walled garden. Option 2 also impacts the supply side of the NMS market, as it levels the playing field for all providers and allows existing operators and new innovative firms to compete against larger corporations.

Option 3 combines the open data requirement with another essential feature: a mid-layer, or computer reservation system (CRS) to gather information, provide oversight, and act as a central clearinghouse for data requests. The mid-layer is an intermediary between operators and aggregators that can be run as a public utility. There are several advantages to adding such infrastructure. A CRS reduces entry costs for both NMS firms and aggregators by providing access to data and data infrastructure. By taking data on all available vehicles from operators and disseminating that data to all aggregators, a CRS eliminates duplicate requests. Finally, in its position as the central data clearinghouse, the CRS can request additional data from operators.

Option 4 is a strategy adopted by other cities, including LA, Denver, and Dallas. It involves an exclusive contract between the city and a single aggregator app. The intent is to give cities more control of the aggregator space. However, without competitive pressure in the aggregator space there is less incentive to provide an innovative service. This strategy also creates a single point of failure: if there is a problem with the app, all individuals using it are left stranded. We believe that cities can gain the advantages of control by running a CRS, without losing the advantages of competition among aggregators.

Our economic analysis shows that option 3 will best serve Vancouver residents as it provides the benefits of market competition while guarding against the formation of monopolies in the new mobility space. Furthermore, it involves creating a new public utility that will gather and disseminate the valuable data generated by the NMS industry, providing cities with information for setting policy.
Additional Information

ELIGIBILITY CRITERIA

- All public universities and colleges in Canada are eligible for funding under NMRG Program. The Principle Researchers must be a member of the faculty (full or part-time) at the sponsoring Institution.

- Researchers based abroad, who maintain an affiliation with a Canadian postsecondary institution, are also eligible to apply; however, the Principle Researcher must be a must be a member of the faculty of a Canadian public university or college.

- Postdoctoral researchers are eligible to be applicants if they have formally established an affiliation with an eligible institution at the time of application and maintain such an affiliation for the duration of the grant period.

- Graduate or undergraduate students are not eligible to apply.

- Individuals may apply for only one grant per calendar year.

- A broader research initiative, which involves multiple researchers or multi-year timelines could apply for multiple grants, so long as each grant has a distinct deliverable to be completed within two years, and all other eligibility criteria are met. However, successfully receiving one grant does not guarantee receiving additional grants.

EVALUATION PROCESS

TransLink will strike an evaluation panel of TransLink and local government staff experts to review and score incoming applications. The following criteria are used in the evaluation process:

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Priority</td>
</tr>
<tr>
<td>Research matches research priority needs for the year.</td>
</tr>
<tr>
<td>Purpose & Importance</td>
</tr>
<tr>
<td>The importance of the research in contributing to the body of knowledge on new mobility topics, including originality and significance. There is potential to produce a breakthrough or a major advance in some portion of transportation practice.</td>
</tr>
<tr>
<td>Local Relevance & Applicability</td>
</tr>
<tr>
<td>The research is highly applied in nature and has strong long relevance for this region. There are clear benefits for TransLink, local government or other transportation agencies.</td>
</tr>
<tr>
<td>Methodology</td>
</tr>
<tr>
<td>The concept has technical and scientific merit. The methodology and theoretical approach is well defined and appropriate to the research question at hand.</td>
</tr>
<tr>
<td>Work Plan & Scope</td>
</tr>
<tr>
<td>The research is well-scoped, with appropriate levels of resourcing and timing, and has a high degree of likelihood to complete within the budget and timelines proposed.</td>
</tr>
<tr>
<td>Researcher Experience</td>
</tr>
<tr>
<td>The applicants and co-applicants are qualified to undertake this research plan and have evidence of past success in similar projects, facilities available to them.</td>
</tr>
<tr>
<td>Leveraged Funding</td>
</tr>
<tr>
<td>The grant funds, if awarded, help to leverage additional funding from other sources. Higher marks if co-funding confirmed.</td>
</tr>
<tr>
<td>BC-Based Researchers</td>
</tr>
<tr>
<td>Lead applicant or members of the project team are researchers at BC-based post-secondary institutions.</td>
</tr>
</tbody>
</table>

More information can be found on the New Mobility Lab website: https://www.translink.ca/plans-and-projects/programs-and-studies/translink-tomorrow#new-mobility-lab
TransLink-UBC Sustainability Scholars Program

The UBC Scholar program funds students to research topics of interest for TransLink. Each scholar is assigned to a mentor from TransLink staff whom help guide the scope of work and development of the research project. Topics have included future-proofing transportation mobility hubs, analysis of transit agency intergovernmental agreements for Major Transportation Investments, fare capping, drone technology, blockchain and data sharing, bike parking operational frameworks, impacts of shared, autonomous and electric vehicles, on-demand models and shared-use transportation services data, carsharing services, and climate change adaptation planning for transit.

For more info on previous projects, see the New Mobility Lab webpage: https://www.translink.ca/plans-and-projects/programs-and-studies/translink-tomorrow#new-mobility-lab
Saki Aono

Research Dates:
October 2018 – February 2019

Saki completed her master’s degree in Community and Regional Planning at UBC with a specialization in transportation planning. She also has an undergraduate degree in International Development and Environment from McGill University. She is passionate about enhancing equity, accessibility, and inclusivity in sustainable transportation. Previously, Saki worked as a Research and Project Assistant at UBC’s Research on Active Transportation Lab where she conducted research on the market, barriers, and potential impacts related to the adoption of electric assist bicycles in British Columbia. As a Sustainability Scholar working on the Mobility Hubs & Corridors project, Saki identified potential mobility hub locations in Metro Vancouver and provided recommendations on suitable future-proof hub elements that promote travel resiliency.

Saki worked on *Identifying Best Practices for Mobility Hubs*. She was mentored by Becky Lai and Eve Hou. Saki currently works at TransLink.

Veronica Ardila

Research Dates:
May 2020 – August 2020

Veronica Ardila is a Colombian architect and urban law specialist that completed a professional Master of Engineering Leadership in Urban Systems at UBC. Her professional background has involved working in both private and public sectors, with a focus on urban planning and urban policy review and analysis. Previously she was the Director of Land Use Policy of Bogotá at the Planning Department.

On her free time, she enjoys running and biking, cooking and figuring out new visualization tools on Tableau. She is very passionate about seeking new solutions that develop social equity in environmentally efficient urban systems.

The main objective of the research project was to review TransLink’s approach to future Supportive Policies Agreements, including considerations regarding process, content and scope in order to be more efficient and effective on transit investments and projects through coordinated land use and transportation planning across the region. She was very excited about researching agreements and best practices from across the globe that are similar to TransLink’s Supportive Policies Agreements (SPAs). Her research project includes four different case studies in North and South America.

Veronica will be working with Nathalie Kip and Joanna Brownell on the project titled *Review and Analysis of Transit Agency Intergovernmental Agreements for Major Transportation Investments*.
Andrea Byfuglien

Research Dates: October 2019 – June 2020

Andrea recently graduated with a Master of Science in Resources, Environment and Sustainability at UBC. She holds a double Bachelor’s degree in Psychology and Geography from The University of Melbourne. Her current research at UBC is in collaboration with UBC Botanical Garden and focuses on behavioral interventions to motivate meaningful climate action. Using the UN Sustainable Development Goals as a framework, Andrea is interested in advancing sustainable development through applied behavioral science. On her days off you will likely find her running, skiing or somewhere in the backcountry.

This project aimed to help TransLink assess the impacts of the proposed implementation of fare capping. This research will help TransLink improve its decision making related to fare products and whether to pursue the implementation of fare capping by using insights from behavioural science to understand customer preferences and reactions to fare products.

Andrea will be working with Peter Lipscombe, Policy Development, on an Encouraging Sustainable Transportation Through Behavioural Insights: A Study to Assess the Impacts of Fare Capping on Transit Ridership.

Shareen Chin

Research Dates: April 2019 – August 2019

Shareen is an urban planner with 15 years of experience working in the local and national not-for-profit, health authorities and public post-secondary environments. Currently, she is a Senior Planner at First Nations Health Authority. Her employers include the Vancouver Economic Commission, University of British Columbia, Katimavik, and the BC Centre for Disease Control. She served as a director on the board of HUB Cycling and as a member of the Vancouver Park Board Neighbourhood Matching Fund Committee. Shareen was excited at the opportunity to research drone technology for TransLink’s early exploration into un-crewed aerial transportation. Her policy and industry research allowed her to attend the Uber Elevate Summit in Washington D.C. and connect with international industry representatives and policy experts. She hopes that her research provides TransLink a start with understanding if and how drone technology could fit with a sustainable model of transportation embraced by Metro Vancouver.

Shareen worked with James LaPointe and Eve Hou on researching Remotely Piloted Aircraft System Technology for Future Passenger and Freight Transportation.
Citlali Cruz

Research Dates:
April 2019 – August 2019

Citlali is currently enrolled in the Master of Public Policy and Global Affairs degree at the University of British Columbia. Her focus lies on competition policy, digital platforms regulation, and blockchain technology. In particular, she is interested in studying technology solutions that help achieve the Sustainable Development Goals.

In her free time, she enjoys watching movies, listening to all kinds of music, and experimenting with watercolors.

After her research with TransLink, Citlali enrolled in the Graduate Blockchain Training Path at UBC to become a specialist in the tailoring of blockchain solutions to bring more sustainable outcomes.

Citlali worked with Camile Machado on reviewing *Blockchain for Transportation: How Can Blockchain Technology Improve the Transportation Industry?*

Julia Higson

Research Dates:
October 2018 – April 2019

Julia is pursuing a Master of Landscape Architecture at UBC. She is interested in understanding human-environmental relationships to design resilient and sustainable urban spaces and has previously explored these interests in field work and research projects in India, Tanzania and Japan. Julia is excited to bring her previous experience to the project on developing a bike parking operational framework for transit facilities.

Julia worked with Derek Yau on *Developing a Bike Parking Operational Framework for Transit Facilities.*

Shabnam Khalaj

Research Dates:
May 2019 – August 2019

Shabnam holds a Masters in Economics from the University of British Columbia and BA in Economics from University of Tehran in Iran. She has pursued her interest in environmental issues by working as a Research Associate for Canada’s top environmental policy think tank-Smart Prosperity Institute in Ottawa after graduating from her Masters. In her current RA position, she gets the chance to work on variety of environmental issues across different sectors in Canada.

Shabnam worked with Eve Hou and Josh Power (Metro Vancouver) to explore the *Economic Impacts of Shared, Autonomous and Electric Vehicle Uptake in our Region.*
Rainer Lempert

Research Dates:
October 2018 – February 2019

Rainer is an MSc student at the UBC Institute of Resources, Environment, and Sustainability. He studies sustainable transportation, using a data driven approach to determine policy and business innovations that result in positive social and environmental impacts. This past summer Rainer worked for the City of Vancouver as a Greenest City Scholar, analyzing financial, spatial, and survey data to help develop municipal car share policies.

Rainer graduated from Amherst College in 2015 with a BA in Mathematics and Geology. He then spent two years working in Boston for an environmental consulting company. His experience in the consulting industry, which involved enacting solutions for predetermined policies, influenced his desire to do work that helps shape policy.

Rainer conducted research on Shared Mobility Data Sharing: Opportunities for Public-Private Partnerships. He was mentored by James LaPointe.

Neha Sharma

Research Dates:
November 2019 – June 2020

Neha is a PhD student at the Institute for Resources, Environment and Sustainability (IRES) at the University of British Columbia (UBC). Prior to starting her PhD program, she worked with World Resources Institute (WRI), a global sustainability research organization. She has worked for almost 10 years in sustainability, economic research, and data analytics with renowned research organisations and industry. Neha completed her Master’s degree in Economics from the Gokhale Institute of Politics and Economics in Pune, India. Neha has recently moved to Canada with her family and is thrilled at the prospect of contributing to sustainable research at the transit network she heavily relies on herself, in her new home – Vancouver!

Neha worked with Mirtha Gamiz and Lindsay Wyant (BCAA-Evo) on a Is One-Way Car-Sharing a First-and-Last Mile Solution for Transit? Lessons from BCAA’s Evo Carshare to understand the role of one-way carsharing as a potential solution to the first and last mile challenge to transit. This research would inform policy making and further studies on new and shared mobility platforms that complement transit in the region.
Remzi Xhemalce

Research Dates:
May 2020 – August 2020

Remzi Xhemalce is a Ph.D. Student and a Teaching Assistant at the Institute for Resources, Environment and Sustainability of the University of British Columbia in Vancouver. Previously he worked as Director for International Oil Markets at the office of the Secretary of Energy of Mexico and led the waste management company R&A Bioenergy. In the Summer of 2019, he was a volunteer for the office of the Minister of Natural Resources of Canada in the organization of the 10th Clean Energy Ministerial meeting that took place in Vancouver. He is currently researching best practices for the adaptation of the transportation sector to climate change and on the role resiliency has in the way we move for sustainable and inclusive development. Remzi moved to Vancouver in January 2019 and is now passionate about backcountry skiing and has been exploring BC with his dog Wookiee.

Remzi will be mentored by Saki Aono to conduct a Review of Climate Adaptation Planning for Transit Agencies.

Zak Zenasni

Research Dates:
October 2018 – April 2019

Zak is the Road Ahead Program Coordinator at the City of Vancouver and a former Sustainability Scholar. He obtained a Master’s in Community and Regional Planning with a Specialization in Transportation & Urban Design from UBC. Prior to joining UBC Sustainability, Zak was a Student Transportation Planner at TransLink, a researcher at UD4H, and a Graduate Teaching Assistant for the School of Architecture and Landscape Architecture at UBC. Zak is interested in utilizing technology to disrupt traditional transportation models, and how transit operators can leverage technology to reduce mobility barriers and operating cost, while improving customer satisfaction.

Zak supported the Bowen Island: Transit On-Demand Pilot Project. His research explored transit on-demand business models, best practices from major cities, and key recommendations for TransLink’s rollout of transit on-demand service. This foundation will assist TransLink’s New Mobility Team in the years to come as they assess on-demand transit for smaller or more remote communities around the lower mainland.

He was mentored by Eve Hou.
New Mobility Research Dialogue: 2019

This annual Dialogue is an opportunity for governments, research institutions, academics, and students to review and discuss the latest research findings and creates a space for collaboration, ideation and identification of new research needs in the region. In previous years, the Dialogue has served as an effective channel for feedback-loops between the academic community and government on matters of interest to regional transportation.

In 2019, the first New Mobility Dialogue was organized with the objective to learn about current and planned research on new mobility, explore ideas for new mobility research to inform future grant funding allocations for 2019 and 2020, and to identify opportunities to work together to advance new mobility initiatives.

The Dialogue consisted of approximately 80 attendees from academia and transportation planning staff from TransLink and municipalities. Presentations by the UBC Scholars Saki Aono on “Identifying Best Practices for Mobility Hubs”, Zak Zenasni on “Bowen Island On-Demand Transit Pilot Project”, and Rainer Lempert on “Shared-Mobility Data Sharing: Opportunities for Public-Private Partnerships.”

There was also an overview of the 2018 Lab-funded research projects from Dr. Alex Bigazzi, on “Human-electric hybrid vehicles: Implications of new non-auto mobility options for street design and policy in the Vancouver region”, Dr. Tarek Sayed on “Real-time Safety and Mobility-Optimized Signalized Intersections” and Dr. Hendrick Wolff on “A Framework for Aggregators Apps: Revolutionizing MaaS in Greater Vancouver”.

Dialogue attendees were then organized into six discussion groups to focus on specific topics including electrification, automation, connectivity, shared mobility, Mobility as a Service, and other ideas. The discussion tables provided a better understanding of the issues and questions that need to be explored through future research, and the support required to conduct the research – such as data and partnerships for improved collaboration.

Participants identified the following areas as key research priorities for the region:

- **Big data in transportation**: More and more information is being generated on how we move. Some of that data is passive (for example, cell phone location data) and other data is more actively created (such as roadway sensors). This data has a lot of potential for improving roadway and transit efficiency and safety, understanding consumer behavior in order to encourage mode shift, and creating a seamless experience for travellers. There are also questions surrounding this data, including coordination, governance and privacy.

- **Ride-hailing**: TNCs have disrupted most major North American cities, providing a public service through an entirely private innovative business model. With ride-hailing set to arrive in BC over the next year, there are many questions surrounding how best to govern this new form of mobility, including the impact of various forms of regulation. Another stream of inquiry surrounds the impact of ride hailing on legacy industries, on other modes of transportation and on achieving regional goals of livability, emissions reductions and equity and social inclusiveness.
• **Curb management and infrastructure for new modes:** With the rise of new forms of mobility (electric, automated and shared), along with growing e-commerce, management of curb space is critical. As such, there is need for research on policy measures to allocate, regulate and value curb space and on design of future curbspace and other infrastructure based on anticipated changing needs.

• **MaaS as a mode shift enabler:** Mobility as a Service (MaaS) is heralded as a game-changing shift in the way people in the future will perceive of transportation. But will bundling mobility options as a subscription service encourage mode shift? Are there pricing, feedback or incentive mechanisms that could be built into a MaaS system to influence choices? Will more mobility options in a seamless system encourage more people to forego car ownership?